Abstract
Background: Parkinson’s disease is caused by dopaminergic neurodegeneration resulting in motor impairments as slow movement speed and impaired balance and coordination. Pulsed electromagnetic fields are suggested to have neuroprotective effects, and could alleviate symptoms.
Objective: To study 1) effects of 8-week daily transcranial pulsed electromagnetic field treatment on the functional rate of force development and movement speed during two motor tasks with different levels of complexity, 2) if treatment effects depend on motor performance at baseline.
Methods: Ninety-seven persons with Parkinson’s disease were randomized to active transcranial pulsed electromagnetic field (squared bipolar 3 ms pulses, 50 Hz) or placebo treatment with home-based treatment 30 min/day for 8 weeks. Functional rate of force development and completion time of a sit-to-stand and a dynamic postural balance task were assessed pre and post-intervention. Participants were sub-grouped into high- and low-performers according to their baseline motor performance level. Repeated measure ANOVAs were used.
Results: Active treatment tended to improve the rate of force development during chair rise more than placebo (P = 0.064). High-performers receiving active treatment improved rate of force development during chair rise more than high-performers receiving placebo treatment (P = 0.049, active/placebo: 11.9±1.1 to 12.5±1.9 BW/s ≈ 5% / 12.4±1.3 to 12.2±1.3 BW/s, no change). No other between-treatment-group or between-treatment-subgroup differences were found. Data on rate of force development of the dynamic balance task and completion times of both motor tasks improved but did not allow for between-treatment differentiation.
Conclusion: Treatment with transcranial pulsed electromagnetic fields was superior to placebo regarding functional rate of force development during chair rise among high-performers. Active treatment tended to increase the functional rate of force development while placebo did not. Our results suggest that mildly affected persons with Parkinson’s disease have a larger potential for neural rehabilitation than more severely affected persons and indicate that early treatment initiation may be beneficial.